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How predictable is evolution?
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Viral escape is a big problem

Influenza A HA HIV Env
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Viral escape is a big problem

Influenza A HA HIV Env SARS-CoV-2 Spike

Influenza
• 250K-600K 

deaths a year
• Yearly vaccine 

that is 20-50% 
effective

AIDS
• 700K-1.2M deaths 

a year
• No effective 

vaccine

COVID-19
• 4.9M+ deaths
• Questions about 

durability of vaccine 
protection



Small changes can have big semantic effects
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Small changes can have big semantic effects

The boy pats the dog.

vs

The boy eats the dog.



Single residue change enables viral escape

Influenza A 
hemagglutinin

(WSN/1933)

C179 bNAb

H → S mutation means C179 no longer binds

From Doud, Lee, and Bloom. Nat. Comm. (2018)



Connection to biology

The language of viral escape
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Connection to biology

The language of viral escape

The boy pats the dog.

The boy pets the dog.

The boy patx the dog.

The boy eats the dog.



Our approach

Constrained semantic change search (CSCS)

• You’re given a sequence of tokens from some language

• Goal: Find the single token change that:

1. Induces the largest semantic change

2. Is constrained by the rules/grammar of that language 



Our approach

Constrained semantic change search (CSCS)

• You’re given a sequence of tokens from some language

• Goal: Find the single token change that:

1. Induces the largest semantic change

2. Is constrained by the rules/grammar of that language 

For example:

A sequence of words from   
an English sentence

Or

A sequence of amino acids 
from a viral protein



Some real example changes…

Original headline:

australian dead in bali



Some real example changes…

Original headline:

australian dead in bali

Semantically closest:

aussie dead in bali



Some real example changes…

Original headline:

australian dead in bali

Semantically closest:

aussie dead in bali

CSCS proposed change:

australian ballet in bali



Some real example changes…

Original headline:

blast off of apollo 8

Semantically closest:

blast off of apollo 13

CSCS proposed change:

blast victims of apollo 8



Some real example changes…

Original headline:

excuse me you left a gorilla suit on the bus

Semantically closest:

excuse me we left a gorilla suit on the bus

CSCS proposed change:

excuse me you left a gorilla killer on the bus



Some real example changes…

Original headline:

winegrowers revel in good season

Semantically closest:

winegrowers revel in strong season

CSCS proposed change:

winegrowers revel in flu season
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Our approach

A computational language model

On natural language sequences:

The American president ____________
to Japan yesterday.

𝑝 "went" = 0.5
𝑝 "traveled" = 0.2
𝑝 "absconded" = 0.05

…

𝑝 "xylophone" = 0
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Our approach

A computational language model

On natural language sequences:

The American president ____________
to Japan yesterday.

𝑝 "went" = 0.5
𝑝 "traveled" = 0.2
𝑝 "absconded" = 0.05

…

𝑝 "xylophone" = 0

Trained on thousands of sequences (or more)!



CSCS for biology

Train on viral protein sequence corpus

Influenza A HA
NIAID Influenza Research Database 
(https://www.fludb.org) 

HIV-1 Env
LANL HIV Database
(https://www.hiv.lanl.gov) 

SARS-CoV-2 Spike
Virus Pathogen Database angd Analysis Resource
(https://www.viprbrc.org/)
GISAID
(https://www.gisaid.org/) 
NCBI GenBank
(https://www.ncbi.nlm.nih.gov/sars-cov-2/)

https://www.fludb.org/
https://www.hiv.lanl.gov/
https://www.viprbrc.org/
https://www.gisaid.org/
https://www.ncbi.nlm.nih.gov/sars-cov-2/


Results

Putting it all together to predict viral escape

From Lee et al., eLife (2019)



Results

Unsupervised prediction of escape mutations

High semantic change

Low semantic change

High grammaticalityLow grammaticality

CSCS priority
Last

× Escape mutations
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From Hie, Zhong, Berger, Bryson; 
Science, 2021

AUC = 0.81, P < 1 × 10-5



Results

Enriched escape potential in HA head

From Hie, Zhong, Berger, Bryson; Science, 2021



Results

Similar patterns for CoV-2 S1 versus S2

From Hie, Zhong, Berger, Bryson; Science, 2021



Results

Language model predicts SARS-CoV-2 variants

From Maher et al.; medRxiv, 2021

Spike language model predicts 
mutations up to 4 months in 

advance with AUC of 0.8

Cyrus Maher
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We can predict local evolution with LMs

Fitness landscape

Current sequence



We can predict local evolution with LMs

Fitness landscape

Current sequence

Big open question: What about > 1-residue mutations?



Fitness landscape

Idea

Understand global patterns using local predictions



“RNA velocity”

(La Manno et al, Nature, 2018) 

Idea

Understand global patterns using local predictions



Idea

Understand global patterns using local predictions

“Fitness landscape”

(Wright, Int. Conf. Genetics, 1932) 

Visser and Krug. Nat. Rev. Genetics (2014) Chou et al. Science (2011)



“Universal” protein language model

ESM-1b by Rives et al. (PNAS, 2021):
• Trained on 3 million sequences from 

UniRef50
• Model has 650 million parameters



Velocity of influenza evolution

Temporal Spearman r = 0.49, P < 1e-308

From Hie, Yang, and Kim; bioRxiv, 2021



Velocity of cytochrome c evolution

From Hie, Yang, and Kim; bioRxiv, 2021



Velocity of ancient evolution

From Hie, Yang, and Kim; bioRxiv, 2021

PGK Enolase
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Predicting drug resistance
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HIV M. tuberculosis
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Evolving protein therapeutics

From Hie and Yang; arXiv, 2021



Key takeaways

• Language models have the potential to improve evolutionary 
models and prediction

• Sufficient training data is important!

• Successful implementation will require interdisciplinary 
collaboration
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