Bridging the gap between evidence and policy for AMR: How models can aid AMR containment decision-making

Gwen Knight Associate Professor, Deputy Director AMR Centre

RADAAR: Virtual Workshop – Southeast Asia

What do we want to know?

- where AMR is coming from?
- how much from where?
- what impact will different AMR containment decision-making have?
- what will it cost?

Not AMR are equal...

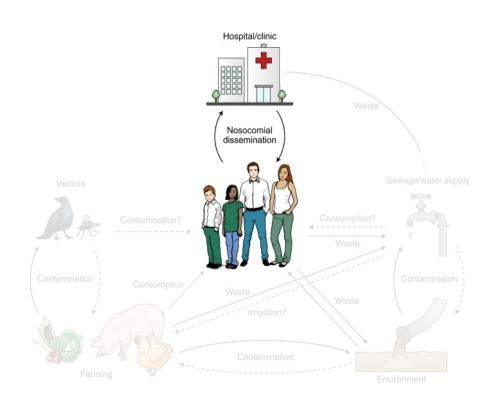
How can we find this out?

- data analysis
- statistical model frameworks
- mathematical modelling

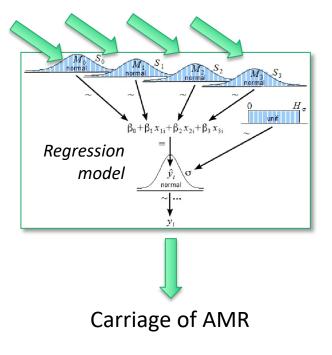
What is a model?



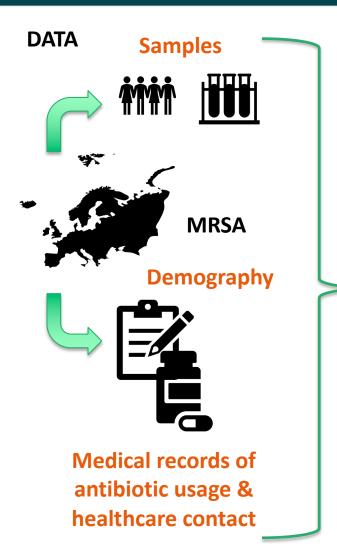
AMR transmission model


What are the risk factors for carriage of resistant bacteria?

Example


- Bug: Staphylococcus aureus
- Resistance: Methicillin resistant (MRSA)
- Setting: Europe
- Problem: MRSA transmits between humans in hospitals ("model"), but getting more MRSA infections in community
- Question: How much is linked to hospital transmission?
- Policy:
 - Hospital linked: target control there.
 - Not hospital linked: where is it coming from? What can we do about this?
- Method:
 - Statistical modelling to extract the contributions of different risk factors

AMR transmission model



Risk factors

Statistical modelling

Risk factors	Model 1: AMR No resistance (0) versus resistance to at least one antibiotic (1)		
	OR	95% C.I.	
Risk factors			4
Age Patient (quartile 1 = ref category)	0.88*	0.82–0.94	
Gender Patient (male = ref category)	0.97	0.85–1.11	
Number of GP visits (0 visits = ref category)	1.13	1.00–1.28	
Work: Nursery	0.84	0.54-1.29	
Work: Health care	1.03	0.78–1.37	
Work: Livestock	1.08	0.70-1.66	
Living with children (no = ref cat)	1.18	0.96–1.45	
Skin condition	1.0	0.79-1.26	
Prescriptions Total (quartile 1 = ref category)	1.04	0.94–1.15	
% Penicillin (quartile 1 = ref category)	1.09*	1.00-1.18	
Random effect			
Country level variance (SE)	0.148 (0.08)		
Practice level variance (SE)	0.034 (0.024)		
Intercept	1.168 (0.:	241)	
significant p<0.05			

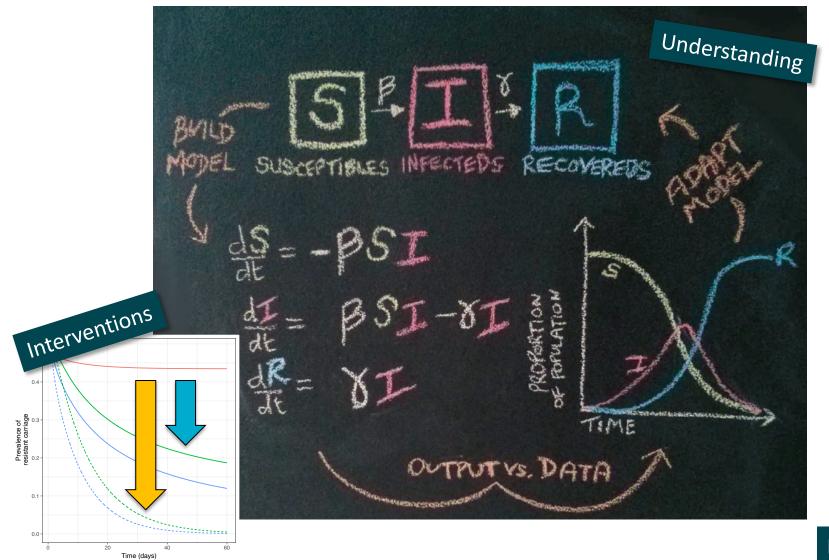
Evidence Penicillin use at the GP level

Variation between countries

Implications for policy Target primary care use National plans

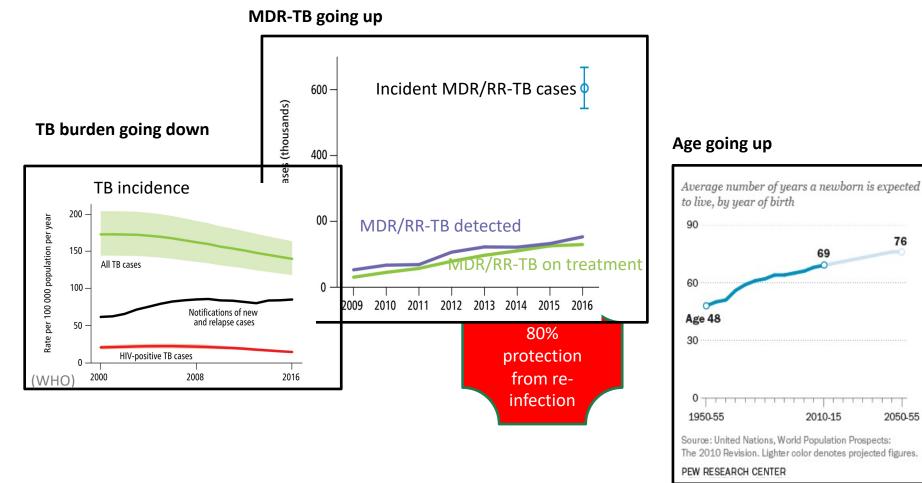
van Bijnen EM, Paget J, de Lange-de Klerk ES, den Heijer CD, Versporten A, Stobberingh EE, Goossens H, Schellevis FG; collaboration with the APRES Study Team. Antibiotic Exposure and Other Risk Factors for Antimicrobial Resistance in Nasal Commensal Staphylococcus aureus: An Ecological Study in 8 European Countries. PLoS One. 2015 Aug 11;10(8):e0135094. doi: 10.1371/journal.pone.0135094. PMID: 26262679; PMCID: PMC4532423.

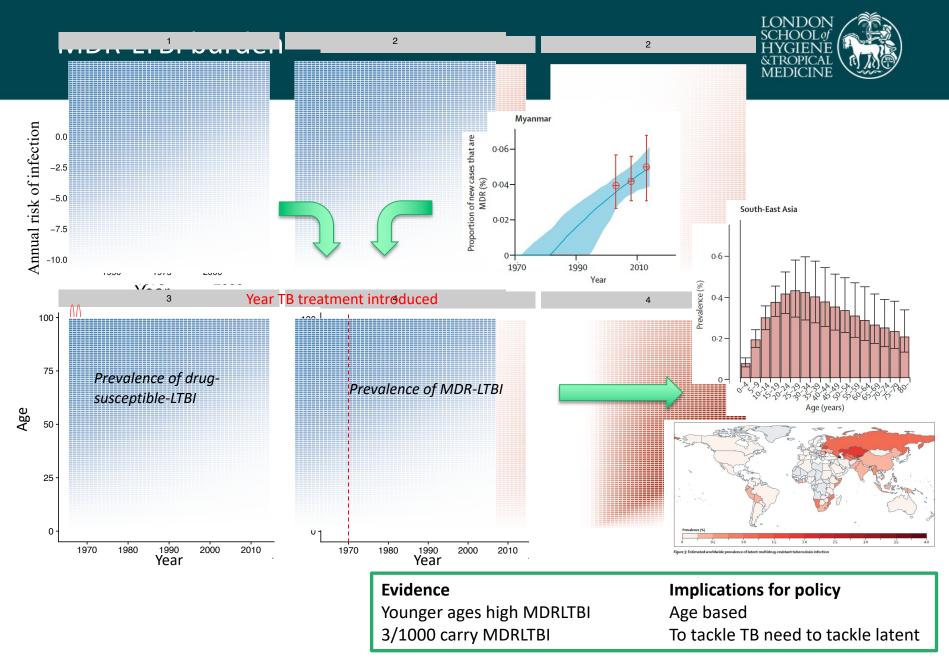
How many people carry drug-resistant bacteria?


Example

- Bug: *Mycobacterium tuberculosis*
- Resistance: Multi-drug (INH/RIF) (MDR-)
- Setting: Global
- Problem: Cannot sample the bacteria causing latent infection, but big risk factor for subsequent diseases.
- Question: How much latent infection is with MDR-TB?
- Policy:
 - Who should we give prophylactic therapy to?
 - Where is MDR-TB coming from? Latent reactivation?
- Method:
 - Mathematical modelling
 - Trend data analysis + cohort simulation model

Mathematical modelling




Decisions

Mathematical modelling

How much latent infection is with MDR-TB?

Knight GM, McQuaid CF, Dodd PJ, Houben RMGJ. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling. Lancet Infect Dis. 2019 Aug;19(8):903-912. doi: 10.1016/S1473-3099(19)30307-X. Epub 2019 Jul 4

Modelling for AMR containment decision-making

- Modelling provides the link between data and evidence for decision making
- Complex relationships can be written in a concise and precise way And analysed with existing methods to generate clear results
- Rigour of mathematical / statistical model supports better decision making (e.g. uncertainty quantification)
- Important to know what the problems are and the appropriate or relevant data to collect for what decision-making evidence

We all have models of how things work – writing them down mathematically improves their quality and our understanding of the world

Thanks to MDR-LTBI co-authors: Rein Houben, Finn McQuaid, Pete Dodd

gwen.knight@lshtm.ac.uk

Any questions?

