주요 학술논문 목록

학술지 발간

Author Goo J, Jeong Y, Park YS, Yang E, Jung DI, Rho S, Park U, Sung H, Park PG, Choi JA, Seo SH, Cho NH, Lee H, Lee JM, Kim JO, Song M
Title Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein.
Journal Name Virus Res
Month / Year 01/2020
Vol (No) 278 ()
Page 197863 ~
Link
Abstract

Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes severe pulmonary infection, with approximately 35% mortality. Spike glycoprotein (S) of MERS-CoV is a key target for vaccines and therapeutics because S mediates viral entry and membrane-fusion to host cells. Here, four different S subunit proteins, receptor-binding domain (RBD; 358-606 aa), S1 (1-751 aa), S2 (752-1296 aa), and SDeltaTM (1-1296 aa), were generated using the baculoviral system and immunized in mice to develop neutralizing antibodies. We developed 77 hybridomas and selected five neutralizing mAbs by immunization with SDeltaTM against MERS-CoV EMC/2012 strain S-pseudotyped lentivirus. However, all five mAbs did not neutralize the pseudotyped V534A mutation. Additionally, one mAb RBD-14F8 did not show neutralizing activity against pseudoviruses with amino acid substitution of L506 F or D509 G (England1 strain, EMC/2012 L506 F, and EMC/2012 D509 G), and RBD-43E4 mAb could not neutralize the pseudotyped I529 T mutation, while three other neutralizing mAbs showed broad neutralizing activity. This implies that the mutation in residue 506-509, 529, and 534 of S is critical to generate neutralization escape variants of MERS-CoV. Interestingly, all five neutralizing mAbs have binding affinity to RBD, although most mAbs generated by RBD did not have neutralizing activity. Additionally, chimeric antibodies of RBD-14F8 and RBD-43E4 with human Fc and light chain showed neutralizing effect against wild type MERS-CoV KOR/KNIH/002, similar to the original mouse mAbs. Thus, our mAbs can be utilized for the identification of specific mutations of MERS-CoV.

Keyword
후원하기